Infrastructure/software/spacy

From Nordic Language Processing Laboratory
(Difference between revisions)
Jump to: navigation, search
(Created page with "= Background = The [https://spacy.io/ SpaCy] library supports a range of ‘basic’ NLP tasks, including sentence splitting, tokenization, tagging and lemmatization, and dep...")
 
(Available Versions)
Line 34: Line 34:
  
  
= Available Versions =
+
= Versions =
  
 
As of October 2018, version 2.0.12 is installed.
 
As of October 2018, version 2.0.12 is installed.

Revision as of 10:06, 1 October 2018

Contents

Background

The SpaCy library supports a range of ‘basic’ NLP tasks, including sentence splitting, tokenization, tagging and lemmatization, and dependency parsing—for about half a dozen European languages. SpaCy is somewhat similar on the surface to the Natural Language Toolkit (NLTK) but prides itself of both higher-quality analysis and better computational efficiency.


Usage

The module nlpl-nltk provides a SpaCy installation in a Python 3.5 virtual environment.

module load nlpl-nltk

This installation (just as other NLPL-maintained Python virtual environments) can be combined with other Python-based modules, for example the NLPL installations of PyTorch or TensorFlow. To ‘stack’ multiple Python environments, they can simply be loaded together, e.g.

module load nlpl-nltk nlpl-tensorflow

Because PyTorch and TensorFlow are ‘special’ in their requirements for dynamic libraries and support for both cpu and gpu nodes, it is important for them to be activated last, i.e. on the ‘top’ of a multi-module stack.


Versions

As of October 2018, version 2.0.12 is installed.

Installation

After a ‘standard’ virtual environment and module definition have been created:

module load nlpl-spacy
pip install spacy
for i in en de es pt fr it nl xx; do python -m spacy download $i; done
Personal tools
Namespaces

Variants
Actions
Navigation
Tools