From Nordic Language Processing Laboratory
Revision as of 09:49, 31 August 2019 by Oe (Talk | contribs)

Jump to: navigation, search


This page provides a working document for requirements in the NLP(L) use case in the EOSC Nordic project.

The NLPL research community (in late 2019) is comprised of many dozens of active users, ranging from MSc students to professors; there is much variation in computational experience and ‘Un*x foo’. Likewise, computing tasks vary a lot, ranging from maybe a handful of single-cpu jobs to thousands of (mildly) parallel or multi-gpu tasks; NLP research quite generally is both data- and compute-intensive.

Typical types of data include potentially large document collections (for example 130 billion words of English extracted from the Common Crawl or vast collections of translated texts in multiple languages), pre-computed representations of word or sentence meaning (so-called word embeddings), or more specialized training and evaluation sets for supervised machine learning tasks like parsing or machine translation.

In a nutshell, preparing the software and data environment for the ‘average’ NLP experiment is no small tasks; duplication of data, software, and effort should be minimized. Further, reproducibility and replicability play an increasingly central role in NLP research.



Personal tools