Vectors/norlm/norbert

From Nordic Language Processing Laboratory
Revision as of 23:47, 11 January 2021 by Andreku (talk | contribs)
Jump to: navigation, search

NorBERT: Bidirectional Encoder Representations from Transformers

Training corpus

We use clean training corpora with ordered sentences:

In total, this comprises about two billion word tokens, both in Bøkmal and in Nynorsk; thus, this is a joint model. In the future, separate Børmal and Nynorsk models are planned as well.

Preprocessing

1. Wikipedia texts were extracted using segment_wiki.

2. In NAK, for years up to 2005, the text is in the one-token-per-line format. There are special delimiters signaling the beginning of a new document and providing the URLs. We converted this to running text using a self-made de-tokenizer.

3. In NAK, everything up to and including 2011 is in the ISO 8859-01 encoding ('Latin-1'). These files were converted to UTF-8 before any other pre-processing.

4. The resulting corpus was sentence-segmented using Stanza. We left blank lines between documents (and sections in the case of Wikipedia) so that the "next sentence prediction" task doesn't span between documents.