Infrastructure/software/tensorflow
Background
TensorFlow is one of the most widely used Deep Learning frameworks in NLP (in mid-2018, at least), with corporate support from Google.
Usage on Abel
The module nlpl-tensorflow provides a TensorFlow installation in a Python 3.5 virtual environment. Besides TensorFlow and its dependencies (e.g. NumPy), the virtual environment includes a selection of popular add-on packages, e.g. SciKit-Learn, the Python Data Analysis Library (Pandas), GenSim, and Keras. This installation should support both cpu and gpu nodes on Abel.
module purge module use -a /projects/nlpl/software/modulefiles module load nlpl-tensorflow
There is a short sample program that test availability of cpu vs. gpu computing devices.
python /projects/nlpl/software/tensorflow/1.11/test.py
qlogin --account=nn9447k --time=1:00:00 --partition=accel --gres=gpu:1 module load nlpl-tensorflow python /projects/nlpl/software/tensorflow/1.11/test.py
Available Versions
As of September 2018, TensorFlow 1.11 is available (and, thus, the default version for this module). An older installation of TensorFlow 1.0.1 is provided by USIT (the operators of Abel); this installation is ‘containerized’, however, i.e. is not easily interoperable with other software modules, and it does not work transparently on both cpu and gpu nodes.
Installation on Abel
module purge module load gcc/4.9.2 cuda/9.0 module load python3/3.5.0
cd /projects/nlpl/software mkdir tensorflow virtualenv tensorflow/1.11
First things first: Enable use of our custom (more modern) GNU C Library installation, by wrapping the basic python binary:
mv /projects/nlpl/software/tensorflow/1.11/bin/{,.}python3.5 sed 's@pytorch/0.4.1@tensorflow/1.11@' \ /projects/nlpl/software/pytorch/0.4.1/bin/python3.5 \ > /projects/nlpl/software/tensorflow/1.11/bin/python3.5 chmod 755 /projects/nlpl/software/tensorflow/1.11/bin/python3.5
Next, create a module definition, in this case /projects/nlpl/software/modulefiles/nlpl-tensorflow/1.11.
module load nlpl-tensorflow/1.11 pip install --upgrade pip pip install --upgrade $(pip list | tail -n +3 | awk '{print $1}') pip install --upgrade -r /projects/nlpl/software/tensorflow/1.11/modules.txt
qlogin --account=nn9447k --time=1:00:00 --partition=accel --gres=gpu:1 cp -av /usr/lib64/libcuda.so* /usr/lib64/libnvidia* \ /projects/nlpl/software/tensorflow/1.11/lib module purge module use -a /projects/nlpl/software/modulefiles module load nlpl-tensorflow pip install --upgrade tensorflow-gpu