Difference between revisions of "Infrastructure/software/tensorflow"
(→Usage on Abel) |
(→Installation on Abel) |
||
Line 50: | Line 50: | ||
<pre> | <pre> | ||
− | qlogin --account=nn9106k --time= | + | qlogin --account=nn9106k --time=1:00:00 --partition=accel --gres=gpu:1 |
+ | cp -av /usr/lib64/libcuda.so* /usr/lib64/libnvidia* \ | ||
+ | /projects/nlpl/software/tensorflow/1.11/lib | ||
module purge | module purge | ||
module use -a /projects/nlpl/software/modulefiles | module use -a /projects/nlpl/software/modulefiles |
Revision as of 09:25, 20 September 2018
Background
TensorFlow is one of the most widely used Deep Learning frameworks in NLP (in mid-2018, at least), with corporate support from Google.
Usage on Abel
The module nlpl-pytorch provides a TensorFlow installation in a Python 3.5 virtual environment.
module purge module use -a /projects/nlpl/software/modulefiles module load nlpl-tensorflow
Installation on Abel
module purge module load gcc/4.9.2 cuda/9.0 module load python3/3.5.0
cd /projects/nlpl/software mkdir tensorflow virtualenv tensorflow/1.11
First things first: Enable use of our custom (more modern) GNU C Library installation, by wrapping the basic python binary:
mv /projects/nlpl/software/tensorflow/1.11/bin/{,.}python3.5 sed 's@pytorch/0.4.1@tensorflow/1.11@' \ /projects/nlpl/software/pytorch/0.4.1/bin/python3.5 \ > /projects/nlpl/software/tensorflow/1.11/bin/python3.5 chmod 755 /projects/nlpl/software/tensorflow/1.11/bin/python3.5
Next, create a module definition, in this case /projects/nlpl/software/modulefiles/nlpl-tensorflow/1.11.
module load nlpl-tensorflow/1.11 pip install --upgrade pip pip install --upgrade $(pip list | tail -n +3 | awk '{print $1}')
qlogin --account=nn9106k --time=1:00:00 --partition=accel --gres=gpu:1 cp -av /usr/lib64/libcuda.so* /usr/lib64/libnvidia* \ /projects/nlpl/software/tensorflow/1.11/lib module purge module use -a /projects/nlpl/software/modulefiles module load nlpl-tensorflow pip install --upgrade tensorflow-gpu